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Abstract. A generalization of the classical gauge theory is presented, in which compact
quantum groups play the role of the internal symmetry groups. All considerations are performed
in the framework of a noncommutative-geometric formalism of locally trivial quantum principal
bundles over classical smooth manifolds. Quantum counterparts of classical gauge bundles, and
classical gauge transformations, are introduced and investigated. A natural differential calculus
on quantum gauge bundles is constructed and analysed. Kinematical and dynamical properties of
corresponding gauge theories are discussed. Particular attention is given to the purely quantum
phenomena appearing in the formalism, and their physical interpretation. An example with
quantumSU (2) group is considered.

1. Introduction

The gauge field theory is one of the fundamental theoretical tools for the development of
unifying models of elementary particles and their interactions. The basic idea incorporated in
the gauge formalism is that of local symmetry, so that the internal symmetry transformations
can be performed independently in various spacetime points. A consistent formulation of
such a theory is possible by introducing fields of a special nature—gauge fields. These
fields appropriately ‘compensate’ effects of arbitrary local symmetry transformations of
the standard matter fields. The group of local tranformations is infinite-dimensional.
In particular, as a consequence of this high-level symmetry, gauge theory is always
renormalizable [23].

The simplest example of a gauge theory is given by classical and quantum
electrodynamics. In this case the internal symmetry group is siiply. Electrodynamics
is included in a non-Abelian gauge theory unifying electromagnetic and weak interactions.
The internal symmetry group for electroweak interactions is givenUgyt) x SU (2).
Furthermore, the physics of quarks and strong interactions is, at least phenomenologically,
includable into the same conceptual framework. Finally, the general relativity theory can
be viewed as a special case of gauge theory, associated to the Poincare group.

On the other hand, gauge theory is a paradigmic example of the interplay between
fundamental physics and differential geometry [7, 16]. The appropriate differential geometric
framework is given by principal bundles [18,19]. The physical spacetime plays the
role of the base manifold of the bundle, and the structure group is identified with the
group describing internal symmetries. Gauge fields are interpreted as connection forms,
while the matter fields are sections of the appropriate associated vector bundles. The
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infinite-dimensional group of gauge transformations is identified with the group of vertical
automorphisms of the bundle.

If the gauge theory really reflects something fundamental in nature, then it is plausible
to assume that the basic picture holds also at the level of ultra-small distances (the Planck
scale). However, the classical smooth manifold description of spacetime is not appropriate
at this level.

Such a natural way of thinking leads to the assumption that general philosophy of gauge
theory should be independent of the nature of the underlying spacetime.

Noncommutative differential geometry [5, 6] essentially enlarges the classical idea of
geometric space, introducing the concept of a quantum space. Informally speaking, a
guantum space shows ‘quantum fluctuations’ of geometry and it is not understandable in
the standard way—as a collection of points equipped with an additional structure. Quantum
spaces are described by the appropriate non-commutative *-algebras, the elements of which
are interpretable as ‘smooth functions’ over these spaces.

There exist non-trivial reasons [6] to believe that noncommutative geometry is capable
to provide the appropriate description of the spacetime at the Planck scale, and to overcome
deep mathematical inconsistencies present in the standard formulation of quantum field
theory.

In conjunction with the generalization of the concept of space, noncommutative
geometry opens a possibility of extending the concept of symmetry—via quantum groups.
Geometrically, quantum groups are quantum spaces endowed with a group structure and
they are included within the framework of Hopf algebras [1].

It is therefore natural to look for the appropriate noncommutative-geometric
generalization of standard gauge theory. A natural mathematical framework for such a
theory should be given byguantum principal bundleswhere quantum groups play the
role of structure groups and quantum spaces are the counterparts of base manifolds. Such
a general formalism was built in papers [8-10]. A short presentation is given in [11].
Conceptually similar, but technically different a formulation of quantum principal bundles
was presented in [2].

In this study we shall discuss properties of a gauge theory based on quantum principal
bundles. We shall assume here that the spacetime is described by classical geometry, and use
locally trivial guantum principal bundles over classical manifolds [8] accordingly. However,
general compact matrix quantum groups [26] will play the role of entities describing local
symmetries.

This paper is a first step towards a ‘fully quantum’ gauge theory [14] in which the
spacetime will also be quantum. There exists several reasons why it is plausible to consider
separately the special case of the theory over a classical spacetime.

First, it is technically easier to deal with classical base manifolds, where the concept of
locality is clearly defined and computations can be performed in local trivializations, as in
the standard theory. In particular, the formalism gives an alternative (but equivalent) way
to perform calculations in the standard gauge theory (and surprisingly, such calculations
are simpler than the conventional ones). In general quantum context, it is not possible to
introduce the concept of a local trivialization, and all considerations should be performed
‘globally’.

On the other hand, it turns out that various global components of the fully quantum
formalism of quantum principal bundles [9] are essentially the same as in the special theory
[8], being independent of the nature of the base manifold.

Finally, in noncommutative geometry the concept of space and the concept of symmetry
are completely independent. Therefore it would be interesting to see what the separate
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contribution of the idea of local quantum group symmetry is to the structure of the
corresponding gauge theory. As we shall see, introducing quantum groups leads to
various ‘purely quantum’ phenomena. The enlarged concept of symmetry opens, in
principle, a possibility of further unifying standard particle multiplets into quantum group
‘supermultiplets’ and it is natural to expect that the theory possesses the same amiable
properties as its classical-geometric counterpart.

Let us outline the contents of this paper. In the next section, preparatory material
is collected. First, we fix the notation and introduce relevant quantum group entities.
Secondly, we present the most important ideas and results of [8], which will be used in
the main considerations. As we have mentioned, the starting point for all constructions
will be a quantum principaG-bundle, P, over a smooth manifold/, playing the role of
spacetime, whil&; is a compact matrix quantum (structure) group [26] representing ‘local
symmetries’ of the system.

In sectim 3 a quantum analogue of the gauge bundle will be constructed and
investigated. This quantum bundle (ovef) will be denoted byG(P). Various quantum
counterparts of gauge transformations are naturally associate@d(®). Further, a
differential calculus on the bundi@(P) will be constructed, by combining the standard
differential calculus onM (based on differential forms) with an appropriate differential
calculus on the quantum group. This calculus orG(P) is relevant in situations in which
guantum counterparts of gauge transformations act on entities related to differential calculus
on the principal bundlepP, as connection forms for example.

It is important to mention that there exist two natural inequivalent ways of introducing
guantum counterparts of gauge transformations. The first one is to translate into the quantum
context the idea that gauge transformations are vertical automorphisms of the principal
bundle P.

This approach leads to a standard group (of gauge transformatioR3. ofhe same
group will be obtained if we consider counterparts of sections of the bghdte. However,
it turns out that such a concept of a gauge transformation does not describe gauge-like
phenomena related to the quantum nature of the sgaddamely, because of the inherent
geometrical inhomogeneity of quantum groups, every quantum principal bubdtsier M
is completely determined by its classical pakt, (interpretable as the set of points 8.

The classical part is an ordinary princip@l;-bundle overM, whereG is a group (the
classical part ofG) interpretable as consisting of points 6f We shall prove that gauge
transformations of? are in a natural bijection with standard gauge transformationg&;of
Further, we shall prove that the set of pointsdifP) coincides, in a natural manner, with
the standard gauge bundlgPy).

The second approach to gauge transformations is in some sense indirect. The main idea
is to construct the ‘action’ of the bundlg(P) on P (generalizing the classical situation).
This approach does not meet geometrical obstructions. In classical geometry, the mentioned
action naturally contains all the information about gauge transformations.

Section 4 is devoted to the formulation and kinematical and dynamical analysis of
guantum group gauge theories, in the framework of quantum principal bundles. Gauge
fields will be geometrically represented by connectionsPoninternal degrees of freedom
of such gauge fields are determined by fixing a bicovariant first-order differential *-calculus
[27] on the structure quantum grodp In this paper we shall deal with a unique differential
calculus onG which can be characterized as the minimal bicovariant differential calculus
compatible, in appropriate sense, with the geometrical structure on the bAndlewe
start from this calculus on the group then it is possible to built natural differential calculi on
bundlesP andG(P) which are always ‘locally trivialized’ when bundle3 (and therefore
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G(P)) are locally trivialized.

Dynamical properties of the gauge theory will be determined after fixing an appropriate
Lagrangian. In analogy with the classical gauge theory, we shall consider Lagrangians
which are quadratic functions of the curvature form. We shall compute the corresponding
equations of motion. Symmetry properties of the introduced Lagrangian will be analysed.
We shall prove the invariance of the Lagrangian under the action of the (ordinary) group
of gauge transformations aP. Further, it turns out that the Lagrangian is invariant, in
an appropriate sense, under the natural actio@(@f) on P. This corresponds to the full
gauge invariance of the Lagrangian in the classical theory.

In section 5 everything will be illustrated in a conceptually simple but technically
highly non-trivial example in whiclG is the quantumSU (2) group. The most important
observation is that the corresponding gauge theogssentially differenfrom the classical
SU(2) gauge theory, and does not reduce to the classical theory when the deformation
parameter - u tends to zero. This is caused by the fact that the minimal admissible
bicovariant calculus does not respect the classical limit. Namely, a detailed analysis [8]
shows that fow € (—1, 1) \ {0} the space of left-invariant elements (playing the role of the
dual space of the corresponding Lie algebra) of the mentioned minimal calculus is infinite-
dimensional, and can be naturally identified with the algebra of polynomial functions on a
guantum two-sphere [21]. Hence, the corresponding gauge fields possess infinitely many
internal degrees of freedom, in contrast to the classical case. Finally, in section 6 concluding
remarks are made.

The paper is brought to a close with an appendix, in which some technical properties
related to the minimal admissible bicovariant calculus on the quarflUi(2) group are
collected.

2. Mathematical background

Let G be a compact matrix quantum group [26]. We shall denotedbthe *-algebra of
‘polynomial functions’ onG, and by¢ : A > A® A, ¢ : A — C andk : A - A the
coproduct, co-unit and the antipode, respectively. The symBbl® - - - ®a™ will be used
for the result of ann — 1)-fold coproduct of an element € A (so thatp (a) = a® @ a®).
Let G¢ be the classical part [8] ofi. Explicitly, G consists of *-characters (nontrivial
multiplicative linear Hermitian functionals) od. The Hopf algebra structure o naturally
induces the group structure @, such that

g8’ = (g®gHe
gt =g«
for eachg, g’ € G¢. The co-unite : A — C is the neutral element a&.;. We shall assume
that the (complex) Lie algebra li€) is realized [8] as the space of linear functionals
X : A — C satisfying
X (ab) = e(@)X (b) + €(b)X (a)
for eacha, b € A.
Let " be a first-order differential calculus ovér. This means [27] thall is a bimodule

over A endowed with a differential d.A — I" such that elements of the foradb linearly
generatd”. Let

re — Z@r@k

k>0
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be the tensor bundle algebra [27] built over Let

F/\ — e91—*/\](
be the universal differential envelope ([8, appendix B])Iaf The algebral’* can be
obtained fromI'® by factorizing through the ideai® C I'® generated by the elements of
the form

Q=7 da®4db

wherea;, b; € A satisfy )", a;db; = 0. In particular, the differential dI'* — I'"* extends
d: A — T, in a natural manner.

Let us assume thdt is left-covariant [27] and letr : ' — A ® I" be the left action
of G onT. LetTj, be the space of left-invariant elementsIof(playing the role of the
dual space of the Lie algebra 6f) and letr : A — T,y be the canonical projection map,
given by

7(a) = k(@®)da®.

This map is surjective an®® = ker(e) Nker(rr) is the rightA-ideal which canonically [27]
corresponds ta".

The spacd’j,, possesses a natural rigdtmodule structure, which will be denoted by
o. Explicitly

w(a)ob =mn[(a — e(a)l)b]

for eacha, b € A.

Let us now assume that is bicovariant, and lepr : ' — I' ® A be the right action
of GonT.

The ‘adjoint’ action ad .4 - A® A of G on G is given by

ada) = a® @ k(a®)a®.

The spacel’,, is right-invariant, that ispr(Tiny) € Tinv ® A. The corresponding
restrictionw : Ty — Tiny ® A is interpretable as the adjoint action@fon I'jn,. Explicitly
w is characterized by

o = (7 Qid)ad.

The actiongr andgpr can be naturally extended to the grade preserving homomorphisms
PP TN 5 TN @ Aandr® i TH® — A® @ (their restrictions onA coincide
with ¢).

The symbol® will be used for the graded tensor product of graded-differential algebras.
The coproductg, admits the unique extensign: I'* — I'*&I* which is a homomorphism
of graded-differential algebras [8]. In particular,

PE) = £r (&) + pr(&)

for eaché € I'. The antipodex, admits the unique extensioh: I'* — I'*, which is
graded-antimultiplicative and satisfiésl = dk.

Let us denote by'®, and I';,, subalgebras of left-invariant elements B and I'*
respectively. We have

® __ ® ek A D Ak
1—‘inv - Z 1—‘inv 1—‘inv - Z 1—‘inv
k>0 k=0
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whererﬁi’\j andT'/ % consist of left-invariant elements frof® and ' respectively. The
®

spacel';,, is actually the tensor product aftcopies oflyy.

The following natural isomorphism holds
1-‘iﬁv = l—‘iér?v/Sigv

is the left-invariant part ofS". This space is an ideal ilT2, generated by

A
where S; inv

inv
elements of the form

g =n@®) @n@?)

wherea € R.

All introduced spaces of the forfi; are right-invariant. We shall denote by* the

adjoint actions ofG on the corresponding spaces.
The formula

Yoa= K(a(l))ﬁa(z)

defines an extension of the riglit-module structure from T, to Fiﬁ;f@. We have
loa=¢€()l
®n) oa=®oa®)(noa®)

for each®, n € Tx® anda € A.
The algebral’s, € ' is d-invariant. The differential d '}, — T'}\

A nv nv nv
determined by

dr(a) = —n(@P)7(@?).

is explicitly

If T is *-covariant then the *-involutionx : ' — T is naturally extendible from
I' to I'"® (such that for each?, n € T'® we have(®n)* = (—)???y*9*). Algebras
ra,, ' c r~® are *-invariant. We have

nv? nv
(Poa) =09"ok(a)*

for eacha € A andy € T))®.

Explicitly, the *-involution onT,, is determined by
w(a)* = —w[k(a)*].

The mapg, as well as the left and the right actions Gfon I'® are *-preserving, in
a natural manner.

Let M be a compact smooth manifold. By definition [8haantum principalG-bundle
over M is a triplet P = (B, i, F) whereB is a (unital) *-algebra, consisting of appropriate
‘functions’ on P, while F : B— B® A and i :S(M) — B are (unital) *-homomorphisms,
intrepretable as the dualized right action@fon P, and the dualized projection @ on
M. Further, the bundle is locally trivial in the sense that for eache M there exists an
open sety € M such thatx € U, and a *-homomorphismy : B — S(U) ® A such that

myi(f) =(flp) ®1
(i[d®@¢)my = (ry Qid)F
and such that

mu((f)b) =0=i(f)b=0
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foreachf € S.(U). HereS andS, denote the corresponding *-algebras of complex smooth
functions (with compact supports, respectively).

The homomorphismr, is interpretable as the dualized trivialization &f over U.
Every pair (U, ny), consisting of an open sa/ € M and of a *-homomorphism
ny B — S(U) ® A, satisfying above conditions is called a local trivializationfof

A trivialization system forP is a family t = {(U, ny)|U € U} of local trivializations
of P, wherel/ is a finite open cover oM.

For eachk € N we shall denote by (/) the set ofk-tuples(Us, ..., Uy) € U* such
thatUy N --- N Uy # @.

The main structural result concerning quantum principal bundles is that there exists a
natural correspondence between quantum prinaipddundles, P, and classical principal
G¢-bundles,P, over M. This corresponence can be described as follows.

From a given trivialization system,, it is possible to construct the correspondi@g
cocycle which is a system of *-automorphismgy of S(U N V) ® A, where (U, V) €
N2(U), realizing transformations betwed, 7y) and (U, ry). Such systems of maps
completely determine the bundf.

Explicitly, let us consider the *-algebra

B =Y ISW) @ Al.
Uveu

The algebral5 is realizable as a subalgebra Bfi{), consisting of elements € X (Uf)
satisfying

(wlyny Q@ id) py(b) = Yryv (v Iyny @ id) py (b)

for each(U, V) € N2(U{). Here, py : =(U) — S(U) ® A are coordinate projections. In
terms of this realization we have

my = pylB

for eachU € U.
However, it turns out thatG-cocycles are in a natural bijection with standatg-
cocycles (oveif), which are systems of smooth mags, : U NV — G satisfying

guvgvw(x) = guw(x)

for each(U,V,W) € N3U) andx € U NV N W (in particular g,j‘l, = gvu)- The
correspondence is established via the following formula

Yuv(p ®a) = pgvy@?) ®a?.

Here, mapsgyy are understood as *-homomorphismsy : A — S(U), in a natural
manner. On the other handi.-cocycles determine, in the standard manner, principal
Gq-bundles,P, over M.

The bundleP is interpretable as the ‘classical part’ 8f The elements o, are in
a natural bijection with *-characters d#. The correspondenc® <« P, has a simple
geometrical explanation. The ‘transition functiongy, are, at the geometrical level,
vertical ‘diffeomorphisms’ of UNV) x G. Therefore they preserve the geometrical structure
of (UNV)x G. In particular, they must preserve the classical par V) x G consisting
of points of (U NV) x G. Moreover, transition diffeomorphisms are completely determined
by their restrictions oU N V) x G, because of the right covariance. The corresponding
‘restrictions’ are precisely transition functions for the classical buriile
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We pass to the study of differential calculus. For each (nonempty) opebl setM
let Q(U) be the graded-differential *-algebra of differential forms &n In developing
a differential calculus over quantum principal bundles it is natural to assume that the
calculus is fully compatible with the geometrical structure on the bundle, such that all
local trivializations of the bundle also locally trivialize the calculus (a precise formulation
of this condition is given in [8, section 3]). It turns out that this condition completely
fixes the calculus on the bundle (if the calculus on the structure quantum group is fixed).
However, the condition implies certain restrictions on a possible differential calchlus,
overG.

Namely, all retrivialization mapsyyy, must be extendible to differential algebra
automorphisms/;, : Q(UNV)®T" — QU N V)T, Differential calculi,I’, satisfying
this condition are called admissible. Iif is left-covariant then it is admissible iff

(X ®id)ad(R) = {0}

for eachX e lie(Gg). This fact implies that there exists the minimal admissible left-
covariant calculug™. This calculus is based on the rigitideal R < ker(e) consisting of
all elements: € ker(e) satisfying

(X®id)ada) =0

for eachX € lie(Gq). A X A A

Moreover, we have a®) € R ® A and«(R)* = R, which implies [27] thatl" is
bicovariant and *-covariant respectively.

In the following, I will be this minimal admissible (bicovariant *-)calculus. Let(P)
be the graded-differential *-algebra representing differential calculug goonstructed by
combining differential forms o/ with the universal envelopE” of I'). Explicitly, let us
consider the direct sum

) = Y ClW)dr.
Ueld
Then Q(P) can be viewed as a graded-differential subalgebra consisting of elements
w € L") satisfying

(wlyay ® ) py(w) =¥y (vIyay ®id) py (w)

for each(U, V) € N2(U). Herepy : = U) — QU)®I" are corresponding coordinate
projections.

As a differential algebraQ (P) is generated byg = Q°(P). For every local trivialization
(U, my) of P there exists the unique differential algebra homomorphigm: Q(P) —
Q(U)®I'" extendingry (in factz;) = py[Q(P)). The map i :S(M) — B admits a natural
extension’t : Q(M) — Q(P), which is interpretable as the ‘pull back’ of differential forms
on M to P. We have

i (w) = (wly) @ 1.

The right actionF : B — B ® A is (uniquely) extendible to a differential algebra
homomorphismF : Q(P) — Q(P)&I", imitating the corresponding pull-back map. The
formula

F" = (dQIF

determines a *-homomorphisi” : Q(P) — Q(P) ® A interpretable as the (dualized)
right action of G on Q(P). HerelIl : I'* — A is the projection map.
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Let ver(P) be the graded-differential *-algebra obtained by factorizingP) through
the (differential *-ideal) generated by elements of the forni£lf]. The elements ober(P)
play the role of ‘verticalized’ differential forms oR (in classical geometry, entities obtained
by restricting the domain of differential forms to the Lie algebra of vertical vector fields on

the bundle). At the level of graded vector spaces, there exists a natural isomorphism
vet(P) =BT

inv:

Let , : Q(P) — ver(P) be the corresponding projection map. In terms of the above
identifications, the differential *-algebra structure o (P) is specified by

@®Mb ) =Y qb® (noa)y
k
bRP) =) b® B oap)
k
dy(b® 1) = Zbk Q m(ar)d +b @ dy
k

whereF(b) = ), by ® ay.

Another important algebra naturally associated 2¢P) is a graded *-subalgebra
hor(P) C Q(P) representing horizontal forms. By definitiohpt(P) consists of forms
w € Q(P) with the property

7h(w) e QU)® A
for each local trivializationU, ry;). Equivalently,
hor(P) = (F)"HQ(P) ® A}.
The algebrayor(P) is invariant under the right action @, in other words
F"(hot(P)) C hot(P) ® A.
Let 4 (P) be the space of all linear mags: I'in, — Q(P) satisfying
(p @id)w = Flo.

This space is naturally graded (the grading is induced ffof®)). The elements of/ (P)
are quantum counterparts of pseudotensorial forms on the bundle with coefficients in the
structure group Lie algebra (relative to the adjoint representation). The g¢ga@bes closed
with respect to compositions with &2 (P) — Q(P).

Let 7(P) C ¢ (P) be the subspace consisting lpft(P)-valued maps. This space is
imaginable as consisting of the corresponding tensorial forms.

There exists a natural *-involution ofi(P). It is given by

P () = p(¥)".

The spacer (P) is *-invariant.
Tensorial forms possess the following local representation:

the®) = (fY @ idyw ()

where fV : 'y — Q(U) is a linear map.

For the purposes of this paper the most important topic of the theory of quantum
principal bundles is the formalism of connections. By definition, a connectiorP aa
every pseudotensorial Hermitian one-fowrsatisfying

T,w(@®)=1Q ¢
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for each® e INi,,. The above formula is the quantum counterpart for the classical condition
that connections map fundamental vector fields into their generators. Connections form a
real affine spaceon(P).

In local terms, connections possess the following representation

mho®) = (AY @idyw (¥) + 1y ® ¥

whereAY : Ty — QU) is a one-form valued Hermitian linear map (playing the role of
the corresponding gauge potential).

The curvature operator can be described as follows. Let us fix admapi, —
Tinv ® Ciny Which intertwines the corresponding adjoint actions and such that if

S(W) = Zﬁkl@ﬂkz
k

then
s ==Y ) e WH* dy = olo?
k k

Every such map will be called a@mbedded differential Further, for each pair of linear
mapse, ¥ on I, with values in an arbitrary algebi@ let (¢, ¥) : I'iny — Q2 be a map
given by

(0, ¥)() =Y pWDYBP).
k
By construction, ifp, ¥ € ¥ (P) then also(p, V) € ¥ (P).
Finally, the curvatureR,, of a connectiono can be defined as
R, = do — (w, w).

The above formula corresponds to the structure equation in the classical theory. It turns out
that R, is a tensorial two-form. Locally, in terms of the corresponding gauge potentials we
have

1y R,() = (FY @ i)y (9)
where
FY =daY — (AY, AY).

For each open sety € M, the symbol®y will be used for the tensor product over
S(U). Similarly, the symbok, will denote the graded tensor product of graded-differential
*-algebras containing2(U) as their subalgebra.

3. Quantum gauge bundles

This section is devoted to generalizations of the most important aspects of the concept of
gauge transformations, in the framework of the formalism of quantum principal bundles.
The main geometrical object that will be constructed is the quantum gauge bundle, a
noncommutative-geometric counterpart of the gauge bundle of the classical theory.
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3.1. Classical picture

In order to present motivations for constructions of this section let us assume for a moment
that G is an ordinary compact Lie group, and |Btbe a (classical) principal bundle over
M.

By definition, gauge transformations #f are vertical automorphisms of this bundle. In
other words, gauge transformations are diffeomorphigmsP — P satisfying

MY =TTy
Y(pg) =v(pg

for eachp € P andg € G, where(p, g) — pg is the right action ofG on P and
my . P — M is the projection map. Equivalently, gauge transformations are interpretable
as (smooth) sections of the gauge bun@i&), which is the bundle associated fa with
respect to the adjoint action @f onto itself.

The equivalence between two definitions is established via the following formula

v(p) = pf(p)
where f : P — G is a smooth equivariant function in the sense that

f(p) =8 f(p)g
for eachp € P andg € G. Such functions are in natural correspondence with sections of
the corresponding associated bun@ieP).

For eachx € M the fibreG, = =, '(x) over x (wheren!, : G(P) — M is the
projection map) possesses a natural Lie group structure. The grFQuis isomorphic
(generally noninvariantly) taz. For a givenp € 71;11()6) = P, there exists a canonical
diffefomorphismG <« P, defined byg < pg, and a group isomorphisn& < G,
given by ¢ < [(p, g)]- Here, G(P) is understood as the orbit space of the right action
((p,g),8) — (pg, g tg’g) of G on P x G and [ ] denotes the corresponding orbit.

There exists a natural left action 6f, on P,. In terms of the above identifications this
action becomes the multiplication on the left. Collecting all these fibre actions together, we
obtain a smooth map

By :G(P) xy P — P. (3.1)

With the help of 8}, the equivalence between gauge transformatignsind sections
¢ . M — G(P) can be described as follows

¥ = By (e xu id). (3.2)
Moreover, the correspondenge< ¢ is an isomorphism between the grogpf gauge
transformations of?, and the groud (G(P)) of smooth sections ofi (P).
The group structure in fibres ¢f(P) determine the following maps of bundles

the fibrewise multiplication oy 1 G(P) xy G(P) — G(P)
the unit section €y M — G(P) (3.3)
the fibrewise inverse  «j, : G(P) — G(P).

At the dual level of function algebras (3.1) and (3.3) are represented by the corresponding
S(M)-linear *-homomorphisms

¢m 2 S(G(P)) = S(G(P)) ®u S(G(P))
ey S(G(P)) — S(M)

ku 2 S(G(P)) — S(G(P))

Bu = S(P) — S(G(P)) Qu S(G(P)).

(3.4)
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The structure of the gauge group is completely encoded in ps«ys, €x}-

At the dual level, gauge transformationg;, can be viewed asS(M)-linear *-
automorphisms) : S(P) — S(P) intertwining the (dualized) right action af. Further,
interpreted as sections ¢f(P), gauge transformations become, at the dual le§éM)-
linear *-homomorphisms : S(G(P)) — S(M). In this picture, the action af on S(G(P))
is given by

(@, ) = (p®id)Bu(f).

Maps (3.4) are not suitable for considering situations in which gauge transformations
act on differential forms. This can be easily ‘improved’ by extending these maQagAf)-
linear homomorphisms

bu  QG(P)) > QG(P)HBURQAG(P))
éw 1 QG(P)) - QM)

Ry o QG(P)) — QG(P))

By 1 Q(P) — QG(P)®uQG(P))

of graded-differential *-algebras. It is worth noting that the above maps are unique, as
graded-differential extensions. Actually, these maps can be viewed as ‘pull backs’ of (3.1)
and (3.3).

(3.5)

3.2. Quantum consideration

The presented picture admits a direct noncommutative-geometric generalization. First, we
shall construct, starting from a quantum principal bun#llethe corresponding quantum
gauge bundl€j(P). Then the counterparts of maps (3.4) will be introduced and analysed.
In analogy with the classical case we shall define gauge transformations as vertical
automorphisms of the bundl€. It turns out that such gauge transformationsFofare
in a natural bijection with ordinary gauge transformations of the classical Baytof P.
We shall also study various equivalent interpretations of gauge transformations. Finally, a
canonical differential calculus on the bundj¢P) will be constructed and analysed.

Let G be a compact matrix quantum group, andiet (5, i, F) be a quantum principal
G-bundle overM. Let us fix a trivialization systemg, for P. For each(U, V) € N2(U)
let us define a linear mag,y : SWNV)®A— S(UNV)® A by the following formula

Euv(p ®a) = pguv[k(@P)a®] ®a®. (3.6)
Lemma 3.1.
(i) The mapstyy are S(U N V)-linear *-automorphisms and
Egv = Evu. (3.7
(i) We have
SuvEvw (@) = Suw(p) (3.8)

for each(U, V, W) € N3U) andg € S.(UNVNW) ® A.
(iif) The diagrams

SUNVI®A 22 [SUNV)® A Quav [SUNV)® A

suv suv®é&uv
SUNV®A @ [SUNV)® A Quav [SUNV)® A]
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id @«

SUNVI®A 2% swnv) SUNV)I®A % sunv)eA
suv id Euv Euv
SUNVI®A — SWUNV) SWNVI®A — SUNV)®A
SUNVI®A 22 [SUNV)®A Quav [SUNV)® A

W/fuvl Euv®yyy
SUNV)® A T [SUNV)® A ®uav [SUNV)® A]

are commutative.
Proof. We have
Euvévw (e ® a) = Eyv (pgvwlk(@P)a®] ® a®)
= pgvwlk@M)a®gyv[x(@?)a®] ® a®
= pguwlk@)a®] ® a® = Eyw(p ® a)

for each(U, V, W) € N3U), ¢ € S.(UNVNW) anda € A. In particular, forW = V this
implies that the map§yy are bijective and that (3.7) holds.
The mapstyy are *-homomorphisms because of

Eyy(p* ®a*) = o gvy @V gyy (@) ® a®*
= [pgvu (@) gy (@]*® a?* = &yv (¢ ® a)*
and

Eyv(9y ® ab) = pYrgyy (@PbP)gyy (@®b®) ® a®p?
= [pgvu(@®)guv(@®) ® a® [y gvy (B guy (B®) ® b?]
=&yv(p @ a)éyy (¥ @ b).

Finally, let us check the commutativity of the above diagrams. We compute

(Evy ® Eyy) (1 ®) (¢ ® a) = pguv (k(@P)a®k(@?)a®) @ a® ® a®
= pguy(k(@P)a®) ® a®? ® a®
= ([d®¢)syv (¢ ® a)
and similarly

Euv ® Yuy)(id@¢) (¢ ® a) = pguy (k(@P)a®)gyvy(@?) ® a® ® a®
= pgvu(@?P) ®a® ®a® = (i[d®)Yyv (¢ @ a).

Finally,

Euv(p ® k() = pguv (k2(@®)k(@?)) @ k(@?)
= pguv(k(@?)a®) @ k(a?)
= (i[d®«)&yy (¢ @ a).

Together with a trivial observation that
(id )&y (9 ® @) = pguy (k(@)a?) = e(a)p

this completes the proof. O
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The (algebra of functions on the) quantum gauge bugd) can be now constructed
as follows. LetD be the set of elementgs € X () such that

(wlyay ®1d)pu(q) = éuv (v yny ®id)py(q) (3.9)
for each(U, V) € N2(U1).

Clearly, D is a *-subalgebra o (/). The quantum spacg(P) corresponding tdD
plays the role of the bundle associated to the principal buRdi@ith respect to the adoint
action of G onto itself (represented by ad4 — A ® A). The fact thatG(P) is a bundle
over M is established through the existence of a *-monomorphigmS(M) — D, playing
the role of the dualized fibring af (P) over M. This map is defined by equalities

puju(f) = (f1U) ® L. (3.10)

Definition 3.1.The pairG(P) = (D, jy) is calledthe quantum gauge bundbssociated to
P.

We are going to introduce quantum counterparts of ngapsc<,, € andp,,. For each
Uel,letn) :D— S(U)® A be the restriction of, on D.

Proposition 3.2.
(i) There exist the unique linear mapgs, : D - Dy D, ey : D — SM),
ky - D— DandBy : B— D ®y B such that

() ® m)pw = (id @¢)7y, (3.11)
() ® 7u) By = (id @), (3.12)
T[gKM = (id ®K)7le] (3.13)
lyem = (id ®e)r, (3.14)

for eachU € U. Here,SU)Q A® Aand(S(U)® A) ®y (S(U) ® A) are identified, in a
natural manner.

(i) All maps areS(M)-linear. The map®,, ,ey and B, are *-homomorphisms while
Ky is antimultiplicative and

kulem(f)] = f (3.15)
for eachf € D.

Proof. The above equalities uniquely fix the values of maps €, x) and 8y, because
the mapsty andnfj distinguish points of3 andD.
Let us consider the algebra

U =) S ®A® A
Ueld

AlgebrasD ®,, D andD ®,, B are understandably subalgebras3fii/). Let us consider
mapseoy : TU) — Z*U), ky : Z(U) - ZU) andey : TU) — SU) defined by

pydn = (id ®¢) py

puku = (ild®«) py

lvem = (ld®e€) py
wherep}, : Z*(U) — S(U) ® A® A are coordinate projections asl/) is the direct sum
of algebrasS(U).

It is easy to see thapy(B) € Dy B, ¢opu(D) € Dy D, k(D) € D and

ey(D) € S(M). Let us denote by{oy, By, ku, €} the corresponding restrictions.

By construction (3.11)—(3.14) hold, maps, ¢ ande, are *-homomorphismsg,, is
antimultiplicative and (3.15) holds. O
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The fibres of the bundl€(P) possess a natural quantum group structure. Further,
the bundleG(P) acts on the bundleé’, preserving fibres and the right action. This is a
geometrical background for the next proposition.

Proposition 3.3.The following identities hold

(id ®@pm)pu = (pu ® id)puy (3.16)
(d®F)Bu = (Bu @ Id)F (3.17)
(Id®Bum)Bu = (du ®id) By (3.18)
(i[d®em)py = (ey ®id)py = id (3.19)
(en ® i) By = id (3.20)
my (kky @ id)y = my (iId @k )Py = juem (3.21)

wheremy, : D ®) D — D is the multiplication map.

Proof. In terms of local trivializations, everything reduces to elementary algebraic
properties of the coproduct, the co-unit, and the antipode. O

We pass to the analysis of gauge transformations, in this quantum framework. In analogy
with classical geometry, these transformations will be defined as vertical automorphisms of
the bundle.

Definition 3.2. A gauge transformatiorof the bundle P is every S(M)-linear *-
automorphismy : B — B such that the diagram

B -5 BeA
/| |rei (3.22)

is commutative.

The above diagram infers that intertwines the right action oG on P, while the
S(M)-linearity property ensures that is a ‘vertical' automorphism ofP. Obviously,
gauge transformations form a subgro@g Aut(3).

Proposition 3.4.
(i) The formula

fo (feidpy=y (3.23)

establishes a bijection betwedtiM)-linear *-homomorphisms : D — S(M) and gauge
transformationsy € G. In terms of this correspondence, the m@p corresponds to the
neutral element iy while the product and the inverse in the gauge group are given by

frm <yt (3.24)
(f' ® flom < vy’ (3.25)

(ii) Let ¥ be an arbitrary gauge transformation. Then the map P — P defined
by

va(p) = py~* (3.26)

is an ordinary gauge transformation &f;. Moreover, the above formula establishes an
isomorphism between groups of gauge transformations of buriiiasd P,.
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Proof. Identity (3.17) implies that &(M)-linear homomorphisny : B — B given by the
right-hand side of (3.23) satisfies (3.22). Identity (3.20) ensurescjhatorresponds to the
neutral element o§.

Let us consider an arbitrary gauge transformatioa G. In terms of the trivialization
system,r, we have

v () =Y eiyu(a) ® a? (3.27)

for eachU € U. Here,ny(d) = ) ,¢; ® a; andyy : U — Gg are smooth functions
uniquely determined by (understood here in the ‘dual’ manner). We have

(@) [y gve@?) = gvu @) (v @?®) Tuav) (3.28)

for eacha € A and (U, V) € N?U).

Conversely, if *-homomorphismg, : A — S(U) are given such that equalities (3.28)
hold, then formula (3.27) consistently determines a gauge transformation

Let us now consider a map : X (U) — SU) defined by

f= Z®fU
ved
where fy : S(U) ® A — S(U) are maps given byfy (¢ ® a) = ¢yy(a). It is easy to
see that ifb € D then f(b) € S(M) (whereS(M) is understood as a subalgebraSit/)).
Let us pass to the corresponding restrictibpn D — S(M). By construction (3.23) holds
(it is evident in a local trivialization). Conversely, if : D — S(M) determines a gauge
transformationy then

f®)ly = Zﬁl)i)/u(ai)-

This easily follows from (3.23).
Let us check correspondences (3.24), (3.25). We have

[(f® o @1d1By = (fFRY)Bu =7y
(feu ® o = fmulky Qid)dy = en.

Finally, the second statement easily follows from the definition of gauge transformations,
and from the local expression (3.27) for them. O

A geometrical explanation of statement (ii) is the following. Gauge transformations,
being diffeomorphisms of at the geometrical level, must preserve classical and quantum
parts of P. On the other hand, because of the intertwining property, gauge transformations,
y, are completely determined by their ‘restrictiong] on P, which correspond precisely
to the standard gauge transformationsPgf

The quantum gauge bundig(P) is also an inherently inhomogeneous geometrical
object. This is a consequence of the inhomogeneitg ofThe classical part of the bundle
G(P) (*-characters orD) is naturally identificable with the ordinary gauge bundleRyf.

In other words,

(g(P))cl = g(PcI)-

Let f : D — S(M) be the *-epimorphism corresponding foe G. This map determines a
section f* of the bundle(G(P))¢ as follows

[ )](p) = [f(@)](x) (3.29)
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wherex € M andg € D. In the framework of correspondence (3.23), the nfafbecomes
the section corresponding to the gauge transformatignn the classical manner.

We pass to the construction and the study of differential calculus on the banéle
The calculus will be constructed by combining differential forms on the base manifold
M with a differential calculus on the quantum grogp This calculus will be based on
the universal differential envelop@” of the minimal admissible first-order bicovariant *-
calculusT overG.

Lemma 3.5.

(i) For each(U, V) € N?U) there exists the unique homomorphigd, : QU N
V)®T" — Q(U N V)®T" of (graded) differential algebras, extending the njap. The
mapé[, is *-preserving and bijective, and

EGy) T =Epy. (3.30)
(ii) We have
EnvErw(p) = &Ly (@) (3.31)

for each(U, V, W) € N3(U{) andg € Q(UNVNW)RI".
(iii) The diagrams

QUNEr ¥ [QWnv)e Mdyw[ew nv) @]
&y £, @50,
QU N V)R — [QUNV)@TN&®uav[QUNV)®T"]
id ®@¢
Qunwerr " qunv) QU NV 9% Qw nvers
& i | &y
QUMK — QUNYV) QUNVRT — QUNV)TH
id ®ell id ®k
QU NV 2% QW N V)@ M &um[U N V) eI
Vi E0v®Yyy
QU NV)QT" = [QUNV)@TN&uav[QWUNV)®T"]
1a®

are commutative.

Proof. The uniqueness df}), follows from the fact that2.(U N V)®I" is generated,
as a differential algebra, b§.(U N V) ® A. The hermicity of/;,, follows from the fact
that &), * is a differential extension of the same ma&f,v* = &yy. In a similar way it
follows from lemma 3.1 that the above diagrams are commutative, and that (3.30), (3.31)
hold.

We prove the existence of/;,. The admissibility of" and the universality of
' imply that mapsgyy admit the unique graded-differential (*-preserving) extensions
gUV I — QLUNYV).

Now, the mapsfyy : I'" — QU N V)&I'" given by

fovw) =Y @vow}) ® wd)(@uv (W) ® 1)
whereY", wr@uw?@uw?® = ($®id)p(w) = (id ®¢p)¢(w), are homomorphisms of differential
*-algebras. Finally, le€/, be defined by

Epy(@®w) = afyy(w).
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It is evident that such defined maps are differential algebra homomorphisms extending
§uv. O

Let Q(t, G(P)) be the set of all elements € X" () satisfying

(v'lyny @id)py(w) = &)y (v [yay ® id) py (w) (3.32)

for each(U, V) € N?(U). It is clear thatQ(z, G(P)) is a graded-differential *-subalgebra
of = U), and thatQ®(r, G(P)) = D. The elements of the algebi@(r, G(P)) play
the role of differential forms on the bundlg(P). This algebra is generated 1y, and
in fact does not depend of a trivialization systam More precisely, ify is another
trivialization system forP then there exists (the unique) differenti@—) isomorphism
Q(t,G(P)) < Q(n,G(P)) extending the identity map o®. For this reason we shall
simply write Q(z, G(P)) = Q(G(P)).

Proposition 3.6.
(i) The maps{ey, ju, Bu, du} admit unique extensions

Py - RG(P)) = QUG(P)OMQG(P))
€y RGP)) = QM)
QM) — Q(G(P))
By i Q(P) — QG(P)®uQ(P)
which are homomorphisms of graded-differential algebras.

(i) The map«, admits the unique extensiaty, : Q(G(P)) — Q(G(P)) which is
graded-antimultiplicative and satisfies

kyd = dkjy. (3.33)
(i) The following identities hold
(¢ ® )¢y = (id @) By (3.34)
(¢ ®id)By = (d®By) By (3.35)
(d@F)By = By @ id)F (3.36)
(id ®e gy = (epy ® id)pyy = id (3.37)
(e ®id)By =id (3.38)
miy (chy @ i)y, = miy (d @y = jnen (3.39)
wherem?, is the multiplication map ir2(G(P)).
(iv) We have
s iy = (ep) " (3.40)

while {e},, ji;. By» o3y} are *-preserving maps.

Proof. Using the (anti)multiplicativity, the intertwining differentials properties, and the
fact that all considered differential algebras are generated by corresponding zeroth-order
subalgebras, it is easy to see that extensions of all maps involved are, if they exist, unique.
The same properties, together with proposition 3.3, imply that identities (3.34)—(3.39) hold.
Statement (iv) follows from (ii) of proposition 3.2 in a similar way. Finally, existence of
mapsey,, jiu. B, ¢ andky, can be established in a similar way as for maps jy, Bu,

dm andxy. O
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Everyy € G understood as a *-homomorphisf: D — S(M) is uniquely extendible to
a Q(M)-linear *-homomorphismf”* : Q(G(P)) — Q(M) of graded-differential algebras.
The following correspondences hold

y e i) (3.41)
vy o my(f" @ f")dy- (3.42)

4. Gauge fields

In this section we shall present a generalization of the classical gauge theory, within the
geometrical framework of quantum principal bundles. The base man¥oldill play the
role of spacetime. The quantum groGpwill describe ‘internal symmetries’. In order to
simplify considerations, we shall deal only with a ‘pure gauge theory’.

Let us assume thatj,, is endowed with anw -invariant scalar produdt ). This means
that

CANENES Z(ﬂk, ) @ cid
7]

for eachd, n € Tiny, Where) 0, ® cx = w () and)_, n; @ d; = w ().
Let us assume tha¥ is oriented and endowed with a (pseudo)riemannian structure.
Let us denote bw the Hodge operation of2(M). It can be (uniquely) extended to a
linear mapx : hot(P) — hor(P) such that

*(i" (@)b) = i" (x(cr))b

for eacha € Q (M) andb € B.

Following the classical analogy gauge fields will be geometrically represented by
connection formso on the bundlepP.

To make possible dynamical considerations it is necessary to fix a Lagrangian.
Generalizing the classical situation, it is natural to consider Lagrangians which are quadratic
functions of the curvaturer,,. The curvature operatoR, depends, other than on the
connectionw, also on a choice of the embedded differential ndapliny — Ciny ® Ciny-

As a consequence of this, dynamical properties of the gauge theory will be essentially
influenced bys. In the classical case the curvaturesighdependent.

Let us consider a map : con(P) — hor(P) given by

L) =) Ry(e)*[Ry(@)] (4.1)

where elements; form an orthonormal system ifj,, and the bar denotes the conjugation
in Tjhy. Itis easy to see thdt(w) is independent of the choice of the mentioned orthonormal
system.

The mapL in fact takes values from the spa€® (M) (wheren is the dimension of
M). Indeed, in terms of local trivializations we have

mplL@)] =) FU(e+[FY @] ® 1 (4.2)

This easily follows from the fact that ; ¢; ® ¢; is w ®2-invariant.

We shall interpret the map as the Lagrangian. In terms of the local representation,
principal stationary points [14] of the corresponding action functidial) = [, L(w) are
given by the following equations of motion

dxFY (@) — 3 (d/* —di")AY (e)»FY (&) = 0 (4.3)
ij
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where numberg,’ are determined by

Sle)=—3) dle;®e;. (4.4)
1

The above equations correspond to the classical Yang—Mills equations of motion. The
numbers(d/* — d’)/2 play the role of the structure constants of (the Lie algebraGof)

If the spacdi,y is infinite-dimensional a technical difficulty arises, related to a question
of convergence of the sum in (4.1), (4.2). In such cases, it is necessary to restrict possible
values ofw on some subspace e@bn(P), consisting of connections having sufficiently
rapidly decreasing components, in an appropriate sense.

We pass to the study of symmetry properties of the introduced Lagrangian. At first, it
is easy to see that(w) is invariant under gauge transformations of the burille

The groupG naturally acts on the left, via compositions, on the spaae®) of
pseudotensorial forms. The spaecéP) is invariant with respect to this action, because
hor(P) is G invariant. The connection space is also gauge invariant. In terms of gauge
potentials the transformation of connections is

AY@) — YAV @y (o) + 0V (). (4.5)
k

Here,@ (8) = >, % ® cx, the mapa? : I'iny — Q1(U) is given by
0Vn(a) = yUk@)dy”@?)

while yV : A — S(U) is the map locally representing Further, the transformation of the
curvature is

FU@) — Y FY@0yY (. (4.6)
k

The Lagrangian (4.1) is invariant under gauge transformations of the bimdldis is
a simple consequence of the unitarity of the representation

This invariance is a manifestation ofassical symmetry propertiesf the Lagrangian.
These symmetry properties are completely expressible in terms of the classicd.pat,

P.

On the other hand, the Lagrangidriw) possesses symmetry properties which are not
expressible in classical terms. The appearance of these ‘quantum symmetries’ is a purely
guantum phenomenon caused by the quantum nature of the Gpdearmally, they can be
described as the invariance of the Lagrangian under a natural action of the quantum gauge
bundleG(P).

Let v (P, G(P)) be the space of linear mags: I'iny — Q2(G(P))®y Q2 (P) satisfying

(f ®id)yw = (IdQF") f. 4.7

If ¢ € Y¥(P) then B0 € ¥(P,G(P)). Hence, it is possible to introduce the map
By w(P) — (P, G(P)) (via compositions).

Let us compute the elemegit, » for w € con(P). Using the definition o8y, and the
local expression fow we obtain

(mh @ m)[Br @] =1y @100+ Y (A"W) @’ ®c? + 1y @ % ®a). (4.8)
k

Here an identification

[QU)RTMRU[QU)RT] = QU)K QT
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is assumed. It is worth noting that the transformation law (4.5) is contained in (4.8).
Indeed, understanding gauge transformations as differential algebra homomorgHisms
Q(G(P)) — (M) we obtain (4.5) by composing;, (w) and /" ® id.

The curvature is transformed as follows

(1 ® 1) [By(R)] = Y FU @) @l ® ¢ (4.9)
k
That is, in local terms we have
FU — (FY @ id)w. (4.10)
The curvature operator is gauge covariant in the sense that
B (Rw) = dBjy (@) — (By (@), By (w)). (4.11)

A possible interpretation of the above equation (which is a trivial consequence of the
fact thatgy, : Q(P) — QG(P)®uQ(M) is a differential algebra homomorphism) is the
following. The relation between the connectien,and its curvature is, being expressible in
intrinsicly geometrical terms, preserved under the actiog@t). Expression (4.6) for the
curvature of the transformed connection under a gauge transformation also directly follows
from (4.9).

In order to find the transformation of the local expression for the Lagrangian, we should
insert into (4.2) the local expression for the transformed curvature, under the Agtioh
G(P) on P. The Lagrangian transforms as follows

D FY(e+FY @) — D FU(e)*FY (E)) ® cucly (4.12)
k kln

wherew (¢;) = Z,- ej ® cj;. On the other hand

Z FUe)xFU (@) | ®@1= Z FY(e)xFY(e,) ® cict, (4.13)
-k - kln
because of ther®?-invariance of}_, e; ® é.

Hence, the Lagrangian is invariant with respect to the agfifjnof the gauge bundle
G(P)onP.

It is important to mention that the property of ‘quantum gauge invariance’ of the
Lagrangian cannot be viewed as an inherent property of the local expression (4.2). Because
this property essentially depends time ordering of termsFY and xFY. However, in
the general case, the ordering of terRs and xR, in the global representation of the
Lagrangian is essential, becausés a noncommutative algebra.

5. An example

We shall now illustrate the presented formalism on a concrete example, assuming that
G = SU,(2) (with u = (—1,1) \ {0}). By definition [25] this compact matrix quantum
group is based on the 2 2 matrix

(o —ny”
u= <7/ ot ) (5.1)
where the elementg andy satisfy the following relations

ay = pya ya' = pa’y Yy =v'y

ca+yty =1 aa” + puy*y =1
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The classical part ofs is isomorphic toU(1). An explicit isomorphism is given by
g < g(@). )

It turns out [8, section 6] that the righd-ideal R C ker(e) determining the minimal
admissible (bicovariant—) first-order calculud” over G is given by

R = (ula + o — 1+ ud1) ker(e). (5.3)
Let X : A — C be a generator of lig) specified by
X(@)=-X@") =3
X(y)=Xy" =0
Let p : A — A be a map given byp = (X ® id)ad. Letv : I,y — C and
p : Tinv = A be the maps defined byr = X andpmr = p. Thenp = (v ® id)w, and
o maps isomorphically the spadg,, onto the *-subalgebr® < A of left G¢-invariant
elements ofd. The subalgebraQ, is interpretable as the algebra of polynomial functions

on a quantum two-sphere.
The adjoint actiong, is reducible. The spadg,, is decomposable into the orthogonal

sum
Sk
Liny = Z Dy
k=0

(5.4)

of irreducible subspaces. The subspagg is (2k + 1)-dimensional (that is, all integer-spin
irreducible multiplets are involved).

The spaces(I'f,) = O is spanned by quantum spherical harmonigs, where
m € {—k,...,k}. They constitute a standard basis for the actiorGof Explicitly, these

elements are given by
Com = ()" [k — m) 1 (k +m) 120" pe(yy )y ™™
oo = "My [k — m), N (k4 m) Y20 pr(y v ™).

Here,m > 0 andd : P(x) — P(x) is a ‘quantum differential’ (acting on the space
P(x) of x-polynoms) specified by (x") = n,x"~1. Finally, px(x) are polynomials given
by

(5.5)

k
— (— k ak[ k 1_ 2-2j ]
pe(x) = (=) ka 1> 2 x) 56
po(x) =1
while ¢, > 0 and

k 2j
1—ps
k=1 1Ju Ju = .

Let us now describe a construction of the natural embedded differentialsmafie
shall first construct a complement< ker(e) of the spaceR.

The elements/* (k € N) are primitive for the adjoint action o on kere). Let
L C ker(e) be the minimalw -invariant subspace containing these elements, and the ad-
invariant element’a +o* — (1+ 1) 1. It turns out that the restrictiopr [£) : £ — Tiny iS
bijective. Evidently, this restriction intertwines the adjoint actions. d ef"j,y — Finy®Tiny
be defined by

8) = —(r @ m[(x L)1 )]. (5.7)
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It is clear, by construction, thatis an embedded differential map. Moreover,

S = —(x @ x)8 (5.8)
where the extension of the antipode Ij,, — [iny is given by
xm = —mK2. (5.9)

Let us compute the values éfon the singlet and the triplet subspacelgf,. The

singlet spacd™?, is spanned by

e = w(ula + a¥) (5.10)
while the triplet spacd™}, is spanned by
N+ =7m(y) n=m(—a) n-=m(y"). (5.11)

Applying the definition ofs we obtain

—8(e) = (e ®e+pu2n@n)/(L+pn? — uny ® n_ — 1’n_ @

—8(ny) = (e — ) @y + 0y ® (€ +m)/(L+ 1)

—8(n) = (- ® (e —p’n) + (e + 1) @n)/ L+ 1)

S =(E@n+n®e+1L—pHn@n/A+u® +uhr @ n- —n-®ny).

The corresponding gauge theory based on the buRAdlealculusT” group G and the
LagrangianL (w) is essentially different from the classical gauge theory Witk SU (2).

At first, gauge fields possess infinitely many internal degrees of freedom. In the classical
limit & — 1 the restrictionAV [T}, on the triplet subspace can be interpreted as a classical
SU (2) gauge field. Restrictions on other irreducible subspaces are classically interpretable
as additional vector fields.

According to the general theory, the connectitfi can be decomposed into ‘classical’

and ‘purely quantum’ parts
AY = Ag + A

where A{j | ker(v) = 0 andAY(¢) = 0. The mapA{| can be interpreted as a connection
on the classicall (1)-bundle P,. It is important to point out that the decomposition
Tinv = ker(v)+Ce is incompatible with the decomposition Bf,, into irreducible multiplets.

Let us compute the singlet and the triplet components of the curvature. Applying the
definition of § and using the local expression of the curvature we find

FY(e) = dAY (e) + n(1 — uHAY (n-)AY (n4)
FY(np) =dAY(np) + AV (np) AY ()

FU(n-) =dAY () + AV AY (n-)

FY(n) =dAY () + 2uAY () AY (n-).

In general, components of the restrictidit’ [T'X, will be expressible through fields
AY(®), wherey e TL, and 1< < k.
Equations of motion are mutualBssentially correlatedindeed, the equation describing

the propagation of fielda” [T¥, will generally contain terms of the form? (9)«FY (),

where®, n € T} and|i — k| < j < i+ k. This easily follows from the definition of.
It is interesting to observe that nonsinglet components are not explicitly influenced by the
singlet componentV (¢). On the other hand, the singlet propagation is intertwined only

with AY (n4). Explicitly,
d«FY(g) = 0.
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6. Concluding remarks

In this study we have presented a gauge theory over classical spacetime, in which internal
symmetry groups are quantum. The basic elements of the formalism can be further naturally
incorporated into the fully quantum context [14], where the spacetime is quantum. However,
the admissibility of the calculu§ is replaced by another global condition, since in the
general quantum context it is not possible to speak in terms of local trivializations.

We have only considered the ‘pure’ gauge theory in this study. The matter fields can
be introduced via the analogues of the associated vector bundles. In the general quantum
context, M is represented by a noncommutative *-algebta~ S(M), and it is natural
to identify associated vector bundles with the intertwidebimodulesF, = Mor(u, F)
consisting of intertwining operators between finite-dimensional representatioosG and
the action mapF. It turns out that, quite generally [12], the system of all these bimodules
completely determines the internal structure of the bundle.

In this study we have also assumed that the higher-order differential calculus on the
structure group is based on the corresponding universal envelope. All constructions can be
performed also in the case when the higher-order calculus is described by the corresponding
bicovariant (braided) exterior algebra [27].

The admissibility assumption fof ensures full local trivializability of differential
structures onP andG(P). However, from the ‘local’ point of view, the whole formalism
works for an arbitrary bicovariant *-calculus.

Physical properties of the presented gauge theory are essentially influenced by two
additional structural elements. First, it is necessary to fix a bicovariant *-cal¢uloer
G. This determines kinematical degrees of freedom. Secondly, the curvature is determined
only after fixing an embedded differential map, in such a way that the dynamics
becomess-dependent. As an example of how the magan influence the dynamics,
let us mention gauge fields based on a four-dimensional calculus [27] over quabt(2n
This (nonadmissible) calculus is spanned by the tripbet, n, n_} and the singlef{z}. As
explained in [8], changing appropriatedywe can pass from the model of noninteracting
fields, to a model where the triplet fields interact similarly as the components of the classical
SU(2) gauge field, modulo the presence of the singlet

A different quantum bundle formalism [2] was used in [3,17] to construct a quantum
analogue of standard gauge theory.

From our point of view, the geometrical formulation proposed in [2] lacks flexibility,
because the basic entities of the formalism (covariant derivative, horizontal projection,
curvature) can be constructed only in very special situations—for bundles possessing some
additional properties, or using the universal calculus (where we have only trivial relations
at the level of the calculus).

One possibility to overcome this difficulty is to consider only universal calculi, and to
restrict the values of the curvature tensor to matrix elements of a given representation of the
structure group. The embedded differential is then simulated by the action of the coproduct
map on these matrix elements. However, thipriori excludes all nontrivial quantum
phenomena that we have considered. Another interesting possibility for developing a gauge
theory in the framework of [2] is given by quantum principal bundles possessing ‘strong’
connections [17], which gives an effective regularity condition. This works also for certain
nonuniversal calculi on the bundle. Such connections are associated to the base, in the
appropriate sense, and they can be taken as proper analogues of gauge fields.

The construction of quantum gauge bundles proposed in this paper depends on the
classicality of the base space (and possibility to locally trivialize the bundle). For general
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guantum principal bundles, it is necessary to use essentially different methods [14]. General
guantum gauge bundles can be constructed by combining the intrinsic braided structure
on quantum principal bundles [15] with the natural structuralization [12] in terms of the
intertwiner bimodules (this replaces, in a certain sense, local trivializations).

Itis important to mention that, for general quantum principal bundles, it has been proven
in [4] that gauge transformations (understood as vertical automorphisms of the bundle) are
in a natural correspondence with the appropriate maps from the structure group algebra to
the bundle algebra intertwining the adjoint action and the right adtioin particular, this
property complements the correspondence established in proposition 3.4.

A conceptually different approach in constructing a quantum group gauge theory was
proposed in [24], using the dual picture of quantized universal enveloping algebras. The
gauge fields are based on the concept of the associated quantum Lie algebra [22].

In particular, the formulation proposed in [24] has a ‘good’ classical limit, because
the dimension of the quantum Lie algebra is the same as the dimension of its classical
counterpart. It would be very interesting to find an invariant geometrical formulation for
such a structure.

From our point of view however, it is unnatural to expect the existence of such a
classical limit, because of the explained inherent geometrical inhomogeneity of quantum
groups. Furthermore, it is plausible to adopt the following interpretation.

In a gauge theory with a quantum grodp the ‘true’ local symmetries are described
by the classical parG.. The ‘complement’ ofG¢ in G is a ‘purely quantum’ space,
describing ‘deformed’ symmetry-like properties. This residual symmetry should be able,
in principle, to unify the particle multiplets associated@g,. Such an interpretation is
very close to the supersymmetry philosophy. In accordance with this way of thinking, it is
conceptually incorrect to try tdeformthe classical gauge theory. Instead, classical gauge
theory should beefined by considering an appropriate quantum extension of the classical
internal symmetry group.

The concept of symmetry is logically independent of the concept of a quantum space.
For example [13], it is possible to define consistently classical differential-geometric
structures on a quantum space. A natural framework for such structures is given by quantum
bundles possessing classical structure groups. If the structure group is classical, then the
construction of the quantum gauge bundle is simplified, and can be completed [15] using
the intrinsic (in this case involutive) braiding for quantum principal bundles.

Appendix. The minimal admissible calculus

In this appendix some properties of entities associated with the minimal admissible calculus,
I, over the quantun§U (2) group are collected. In particular, we shall analyse in more
details the structure of the spa€ewhich determines the embedded differential map.

For each integet > 1 letu, be then xn matrix overA, corresponding to the irreducible
representation [25, 26] of7, having the spinn — 1)/2 and acting inC". Let A, be the
lineal spanned by matrix elements wf. We have

A=3"%4,

n>1

according to the representation theory@f The spacesd, are invariant under the adjoint
action of G. They are mutually orthogonal, relative to the scalar product induced by the
Haar measuré : A — C.
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In subspacesd, the adjoint action decomposes (without degeneracy) into irreducible
multiplets with spins from the s€0, 1, ...,n — 1}.

Lemma A.llLet & € A, be a primitive element for the-spin subrepresentation of ad,,.
Then,

£ = pa(My* (A1)
wherex = pa + pto* and py, is a polynom of degree — k — 1 with real coefficients.
Proof. From the representation theory 6f it follows that

A2 A, = Ay Ay = Aps1 @ Ay

for eachn > 2. This implies that4,, \ {0} is consisting of certain polynoms of degree- 1
(over generators). Further, polynoms of degke€ n — 1 form the spac{;"ea A;, where
i < n. Also, from the reality of commutation relations (5.2) and the orthogonality of spaces
A, it follows that we can write

A, =AM piAl
where A” consists of polynoms with real coefficients.

On the other hand, every nonzero element of the form (A.1) is primitive, and generates
an irreduciblek-spin multiplet relative to the adjoint representation. Keeping in mind the
form of the decomposition oo [ A4, into irreducible multiplets we conclude that (A.1)
covers all primitive elements of the restrictian|A,. |

Let us assume that polynoms, are fixed. For fixed, polynomspy, are orthogonal,
with respect to the scalar product given by

(P, q) = hgWy* y*p(1)"). (A2)
Let j : A — A be the modular automorphism [26] corresponding to the Haar measure.
This map is characterized by the identity

h(ba) = h(j(a)b). (A.3)
In the case of the quantu/ (2) group we have
j) =y J(@) = pPa
j@)y=utat o=y
Applying (A.3), (A.4) we can see that the scalar product defined in (A.2) can be rewritten
in the form

(A.4)

(p.q) = h[p* (g )y 1. (A.5)

Now, starting from (A.5), we observe that the above scalar product is invariant under
the replacememt — « + «*, and using elementary properties of polynoms it can be shown
that all zeros ofp;, are contained in the interval-p, 2].

We have

L=Cur—A+pdHD) o {Z@ljk} (A.6)
k=1

where £; C Ai,1 is the k-spin irreducible subspace (for the adjoint action). LgtC A
be the lineal given by

L.=Cle {Z@Ek}. (A7)

k>1
Let P(1) € A be the subalgebra generatedhy
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Lemma A.2.
(i) We have

®
m(A) =Y Thy (A.8)
k<n—1
for eachn > 2.
(ii) The mapU: P(A) ® L. — A given by
O(p(A) ® a) = p(Ma (A.9)
is bijective.
Proof. Let us prove that’ is bijective. First, let us observe that the elements frB()
are ad-invariant. In particular,

ad(p(M)a) = p(r) ada) (A.10)

for eacha € A. According to lemma A.1 all primitive elements for adl: — A ® A are
contained in the image db. Now (A.10) implies tha®) is surjective. We prove thdb is
injective. It is sufficient to check tha@i|[(P (L) ® L) is injective, for eactk € N. However,
it follows again from lemma A.1 and (A.10), becausép,, (1) ® L;) € A, is exactly the
k-spin irreducible subspace.

The following identity holds on non-trivial ad-multiplets

pU = (e ® (pILy)). (A.11)
Statement (i) now follows from the definition df,, and from the facts that(L) =
w+pt and pe (u + ) # 0. 0
Using (A.6) and the definition of, it can be shown that
® i
SITH) € Y (T ® T (A.12)
ij =

for eachn € N, where the sum is taken over paiis j) satisfyingli — j| <n <i+j. In
particular,

S =d,e @0
s =dv®¢

for eachy e T'f,, with d, € %\ {0}. This implies that singlet components efare not

present in nonsinglet components of the curvature.
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